Aggregating Deep Convolutional Features for Image Retrieval
نویسندگان
چکیده
Several recent works have shown that image descriptors produced by deep convolutional neural networks provide state-of-the-art performance for image classification and retrieval problems. It has also been shown that the activations from the convolutional layers can be interpreted as local features describing particular image regions. These local features can be aggregated using aggregation approaches developed for local features (e.g. Fisher vectors), thus providing new powerful global descriptors. In this paper we investigate possible ways to aggregate local deep features to produce compact global descriptors for image retrieval. First, we show that deep features and traditional hand-engineered features have quite different distributions of pairwise similarities, hence existing aggregation methods have to be carefully re-evaluated. Such re-evaluation reveals that in contrast to shallow features, the simple aggregation method based on sum pooling provides arguably the best performance for deep convolutional features. This method is efficient, has few parameters, and bears little risk of overfitting when e.g. learning the PCA matrix. Overall, the new compact global descriptor improves the state-of-the-art on four common benchmarks considerably.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملAdaptive Co-weighting Deep Convolutional Features For Object Retrieval
Aggregating deep convolutional features into a global image vector has attracted sustained attention in image retrieval. In this paper, we propose an efficient unsupervised aggregation method that uses an adaptive Gaussian filter and an elementvalue sensitive vector to co-weight deep features. Specifically, the Gaussian filter assigns large weights to features of region-of-interests (RoI) by ad...
متن کاملPart-based Weighting Aggregation of Deep Convolutional Features for Image Retrieval
Several recent works have shown that part-based image representation provides state-of-the-art performance for fine-grained categorization. Moreover, it has also been shown that image global representation generated by aggregating deep convolutional features provides excellent performance for image retrieval. In this paper we propose a novel aggregation method, which utilizes the information of...
متن کاملFrom Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval
Convolutional Neural Network (CNN) is a very powerful approach to extract discriminative local descriptors for effective image search. Recent work adopts fine-tuned strategies to further improve the discriminative power of the descriptors. Taking a different approach, in this paper, we propose a novel framework to achieve competitive retrieval performance. Firstly, we propose various masking sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1510.07493 شماره
صفحات -
تاریخ انتشار 2015